Psalmotoxin-1 docking to human acid-sensing ion channel-1.

نویسندگان

  • Yawar J Qadri
  • Bakhrom K Berdiev
  • Yuhua Song
  • Howard L Lippton
  • Catherine M Fuller
  • Dale J Benos
چکیده

Acid-sensing ion channel-1 (ASIC-1) is a proton-gated ion channel implicated in nociception and neuronal death during ischemia. Recently the first crystal structure of a chicken ASIC was obtained. Expanding upon this work, homology models of the human ASICs were constructed and evaluated. Energy-minimized structures were tested for validity by in silico docking of the models to psalmotoxin-1, which potently inhibits ASIC-1 and not other members of the family. The data are consistent with prior radioligand binding and functional assays while also explaining the selectivity of PcTX-1 for homomeric hASIC-1a. Binding energy calculations suggest that the toxin and channel create a complex that is more stable than the channel alone. The binding is dominated by the coulombic contributions, which account for why the toxin-channel interaction is not observed at low pH. The computational data were experimentally verified with single channel and whole-cell electrophysiological studies. These validated models should allow for the rational design of specific and potent peptidomimetic compounds that may be useful for the treatment of pain or ischemic stroke.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of Acid-sensing Ion Channel (ASIC) 1 with the Tarantula Toxin Psalmotoxin 1 is State Dependent

Acid-sensing ion channels (ASICs) are Na(+) channels gated by extracellular H(+). Six ASIC subunits that are expressed in neurons have been characterized. The tarantula toxin psalmotoxin 1 has been reported to potently and specifically inhibit homomeric ASIC1a and has been useful to characterize ASICs in neurons. Recently we have shown that psalmotoxin 1 inhibits ASIC1a by increasing its appare...

متن کامل

Cation selectivity and inhibition of malignant glioma Na+ channels by Psalmotoxin 1.

Psalmotoxin 1 (a component of the venom of a West Indies tarantula) is a 40-amino acid peptide that inhibits cation currents mediated by acid-sensing ion channels (ASIC). In this study we performed electrophysiological experiments to test the hypothesis that Psalmotoxin 1 (PcTX1) inhibits Na+ currents in high-grade human astrocytoma cells (glioblastoma multiforme, or GBM). In whole cell patch-c...

متن کامل

The Tarantula Toxin Psalmotoxin 1 Inhibits Acid-sensing Ion Channel (ASIC) 1a by Increasing Its Apparent H+ Affinity

Acid-sensing ion channels (ASICs) are ion channels activated by extracellular protons. They are involved in higher brain functions and perception of pain, taste, and mechanical stimuli. Homomeric ASIC1a is potently inhibited by the tarantula toxin psalmotoxin 1. The mechanism of this inhibition is unknown. Here we show that psalmotoxin 1 inhibits ASIC1a by a unique mechanism: the toxin increase...

متن کامل

Acid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs

Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...

متن کامل

Expression of acid-sensing ion channels in nucleus pulposus cells of the human intervertebral disk is regulated by non-steroid anti-inflammatory drugs.

Non-steroid anti-inflammatory drugs (NSAIDs) are generally used in the treatment of inflammation and pain through cyclooxygenase (COX) inhibition. Mounting evidence has indicated additional COX-independent targets for NSAIDs including acid-sensing ion channels (ASICs) 1a and 3. However, detailed function and mechanism of ASICs still remain largely elusive. In this study, the impact of NSAIDs on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 26  شماره 

صفحات  -

تاریخ انتشار 2009